收藏本站  您好,欢迎光临本站! [登录|注册]
客服热线: 010-85693195
当前位置: 首页 > 商城资讯 > 热成像仪工作原理

浏览历史

热成像仪工作原理
莱特商城 / 2015-08-20

 红外热成像仪原理

红外热成像仪(热成像仪或红外热成像仪)是通过非接触探测红外能量(热量),并将其转换为电信号,进而在显示器上生成热图像和温度值,并可以对温度值进行计算的一种检测设备。

发射率对红外热像仪测量的影响

任何物体在高于绝对零度(-273.15℃)的时候,其物体表面就会有红外能量也就是红外线发射出来,温度越高,发射的红外能量越强!红外线测温仪和红外热像仪就是根据这个特点来测量物体表面的温度的,既然我们知道了红外线测温仪和红外热像仪是测量物体表面的温度,那么就会免不了被物体表面的光洁度所影响,实验证明:物体表面越接近于镜面(反射越强),其表面所发出的红外能量衰减越厉害,所以我们就需要对不同物体的表面对红外能量的衰减情况做出补偿,也就是设置一个补偿系数,这个补偿系数就是发射率!

红外线是一种电磁波,具有与无线电波和可见光一样的本质。红外线的发现是人类对自然认识的一次飞跃。利用某种特殊的电子装置将物体表面的温度分布转换成人眼可见的图像,并以不同颜色显示物体表面温度分布的技术称之为红外热成像技术,这种电子装置称为红外热像仪。

这种热像图与物体表面的热分布场相对应;实质上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光图像相比,缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热分布场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实标校正,伪色彩描绘等高线和直方进行数学运算、打印等。

 分类:

    红外热成像仪有光子探测和热探测两种不同的原理。光子探测在吸收红外能量后,直接产生电效应,敏感度高,但探测器本身的温度会对其产生影响,因而需要降温。热探测器在吸收红外能量后,产生温度变化,从而产生电效应,敏感度不如前者同时无需制冷。而PULSAR脉冲星热成像仪属于热探测型红外热成像仪。

应用 

热成像仪的用途非常广泛,特别是在军事上,利用热成像仪可以在夜间发现散发热量的坦克发动机、士兵。在工业上,可以利用热像仪快速探测出加工件的温度,从而掌握必须的信息。

热像仪在民用方面都有广泛的应用。随着热成像技术的成熟以及各种低成本适于民用的热像仪的问世,它在国民经济各部门发挥的作用也越来越大。

红外热像仪在医疗、治安、消防、考古、交通、农业和地质等许多领域均有重要的应用

由于热成像系统探测的是热而不是光,所以可全天候使用;又因为它完全是被动式的装置,没有光辐射或射频能量,所以不会暴露使用者的位置。

热成像的优势自然界中的一切物体的温度都高于绝对零度,都会有红外辐射.这是由于物体内部分子热运动的结果。其辐射能量正比于自身温度的四次方成正比,辐射出的波长与其温度成反比。红外成像技术就是根据探测到的物体的辐射能的大小。经系统处理转变为目标物体的热图像,以灰度级或伪彩色显示出来,即得到被测目标的温度分布从而判断物体所处的状态。林区背景温度一般在-4060摄氏度,而森林可燃物产生的火焰的温度为6001200摄氏度,两者温度相差较大。在热图像中很容易将可燃物的燃烧情况从地形背景中分离出来。根据热图像的温度分布,我们不仅可以判断火的性质还能探测出火的位置、火场面积、从而估计火势。

下一篇:数码技术
上一篇:夜视仪分类

用户评论(共0条评论)

  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
评价等级:
评论内容:
验证码: captcha